
FarmSubsidy.org Documentation
Release DEV

OpenSpending / Holger Drewes

March 15, 2014

Contents

1 Overview 3

2 User Manual 5
2.1 Introduction . 5
2.2 Website . 6
2.3 Scraper . 12

3 Indices and tables 17

i

ii

FarmSubsidy.org Documentation, Release DEV

This documentation is intended for developers who want to help out with the FarmSubsidy.org project which aims to
bring transparency to EU farm subsidies and is run by the OpenSpending community.

Contents 1

http://farmsubsidy.openspending.org
http://openspending.org/

FarmSubsidy.org Documentation, Release DEV

2 Contents

CHAPTER 1

Overview

• In the Introduction section you can find some information about FarmSubsidy.org and some hints where
you might want to start reading to get an overview about European Union farm subsidy policy.

• The Website section is describing the structure of the website and the corresponding source code on GitHub.

• In the Scraper section people who want to help out can find information on how to write scapers for the
different countries. Scrapers for the data are hosted in a separate GitHub repository.

Note: This document - especially the definition for new data format starting in 2013 in the scraper section (see:
Scraper Data Format) is currently in DRAFT status, which means that there will be some changes in the next weeks.
For recent changes see both the website changelog (Changelog (Website)) and the scraper_changelog
(Changelog (Scraper)).

This doesn’t mean, that you shouldn’t write your scraper yet since life is a long quite (and ever changing) river and
80+ percent of your work will be able to be kept. Just be aware that there might be the need of some last changes to
get everything to work!

For remarks or questions please contact holgerd77 on Github (March 15th, 2014).

Note: New farmsubsidy data for 2013 should be release around April/May 2014.

3

https://github.com/openspending/Farm-Subsidy
https://github.com/openspending/farmsubsidy-scrapers
https://github.com/holgerd77

FarmSubsidy.org Documentation, Release DEV

4 Chapter 1. Overview

CHAPTER 2

User Manual

2.1 Introduction

2.1.1 Current Situation

FarmSubsidy is a website that collects the payment data of the Common Agriculture Policy (CAP) which represents
about a third of the EU budget. It was run by a group of journalists and activists for the past years. In 2013 the
OpenSpending project of the Open Knowledge Foundation took over responsibility of the website.

Since the old scrapers were proprietary and are not available any more one of the main tasks in the current situation
is to build a new set of scrapers for each country released under an open licence which can be maintained by the
community.

This documentation is intended to give an overview about the requirements for those scrapers so that the data they
provide can be integrated seamlessly and without too much hassle into the existing environment.

So if you want to help, regardless if you are new to Farmsubsidy or if you have already accompanied the project over
the years: your work will be highly appreciated. This is an extremly important topic, and since there are 28 member
states in the European Union there is a good chance that you’ll get your favorite country to write a scraper for! :-)

2.1.2 Background Information

If you need an introduction to the topic of farm subsidies, you can have a look at the Wikipedia article about EU
agricultural policiy or at the CAP website from the European Commision. The wikipedia article is quite long, for an
introduction to the structure of the subsidies just read the The CAP today section.

The main thing you have to know, is that European agricultural subsidies are divided into two funds. The European
Agricultural Guarantee Fund (EAGF) (Wikipedia > EAGF) is for direct payments for farmers (majority of payments)
and for measures to respond to market disturbances. You will find these two posts separately distinguished in the data
provided.

The second fund is the European Agricultural Fund for Rural Development (EAFRD) (Wikipedia > EAFRD).

Since EU funding changed over time, there were other so called schemes of payment though and are also still today,
have a look at the Scheme description in the data model chapter.

2.1.3 Further Reading

If you want to do some further reading, here are some sources to start:

• News section on the Farmsubsidy website

5

http://farmsubsidy.openspending.org/
http://openspending.org/
http://okfn.org/
https://en.wikipedia.org/wiki/Common_Agricultural_Policy
http://ec.europa.eu/agriculture/cap-funding/index_en.htm
https://en.wikipedia.org/wiki/Common_Agricultural_Policy#The_CAP_today
https://en.wikipedia.org/wiki/European_Agricultural_Guarantee_Fund
https://en.wikipedia.org/wiki/European_Agricultural_Fund_for_Rural_Development
http://farmsubsidy.openspending.org/news/

FarmSubsidy.org Documentation, Release DEV

• Googling “farm subsidies EU”

• Same on Google News

2.2 Website

This is the developer documentation for the Farmsubsidy website, located under the following url:

• http://farmsubsidy.openspending.org

Sources for the website can be found on GitHub:

• https://github.com/openspending/Farm-Subsidy/

The website is build with Python using Django as a web framework.

2.2.1 Installation

Requirements

The following list contains only the most central requirements to get an overview which software components are
used. For a complete overview have a look at the requirements.txt file on GitHub.

• Django 1.5.x

• Haystack 2.0.x for search (GitHub Fork with modifications)

• django-registration for user login

• django-piston for the API

The website uses South for DB migrations/changes:

• South

Installation process

1) Get a copy of the project

Git clone the project:

git clone git@github.com:openspending/Farm-Subsidy.git #or use https

2) Install requirements

Set up virtualenv and pip and install the requirements:

virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

6 Chapter 2. User Manual

https://www.google.com/?gfe_rd=ctrl&ei=gyokU7aGMsOvtQbvhIGICQ&gws_rd=cr#q=farm+subsidies+eu
https://www.google.com/?gfe_rd=ctrl&ei=gyokU7aGMsOvtQbvhIGICQ&gws_rd=cr#q=farm+subsidies+eu&tbm=nws
http://farmsubsidy.openspending.org
https://github.com/openspending/Farm-Subsidy/
https://github.com/openspending/Farm-Subsidy/blob/master/requirements.txt
https://www.djangoproject.com/
http://haystacksearch.org/
https://github.com/stefanw/django-haystack/tree/farmsubsidy-deploy
https://bitbucket.org/ubernostrum/django-registration/
https://bitbucket.org/jespern/django-piston/wiki/Home
http://south.aeracode.org/

FarmSubsidy.org Documentation, Release DEV

3) Configure Django

The Django project is located in the web folder.

The Django settings.py file is split into two separate files. global_settings.py contains settings which
shouldn’t change in a deployment, settings.py.template contains settings which should be adopted in a new
deployment.

Create a copy settings.py from settings.py.template and adopt the settings to your needs.

4) Install PostgreSQL

Farmsubsidy code uses some SQL syntax which is not compatible with SQLite and the website is intended to han-
dle/present large amounts of data, so you have to start directly with a native DB and ommit a test installation with
SQLite. Since Farmsubsidy is build and tested with PostgreSQL, a PostgreSQL installation is recommended.

If you haven’t that much experience with installing databases: it’s not as painful as you might think, for the mac e.g.
there is a client which can be installed and is up and running with one click: http://postgresapp.com/

Open psql and create a new DB with:

CREATE DATABASE farm_geo;

If you are just running a test installation on localhost not using a username and passwort (don’t do that in production)
this should already do the trick!

5) Sync/migrate the DB

Since there is an old GeoDjango dependency in the South migrations, early migrations won‘t work without hassle,
so sync all apps with syncdb:

cd web
python manage.py syncdb --all

For getting South back to work again, first list all apps which uses migrations:

python manage.py migrate --list

Then do fake migrations to the latest migration for all apps, e.g.:

python manage.py migrate data LATESTMIGRATIONNUMBER --fake

6) Install Haystack backend

If you use Whoosh as a backend for Haystack, you have to install it (older version due to dependencies):

pip install whoosh==2.4

7) Temporary: create payment_totals.txt

This is due to some legacy code and will be removed as soon as possible:

Create a textfile data/stats/payment_totals.txt (from repository root, not from web directory) and enter
some fake numbers like this:

2.2. Website 7

http://postgresapp.com/

FarmSubsidy.org Documentation, Release DEV

1000000,100000

8) Run the server

Run the development server with:

python manage.py runserver

You should be able to see the farm subsidy website under the URL provided and enter the admin area.

Post-installation hacks

Execute the following SQL manually in case your columns don’t fit (it can’t be migrated):

ALTER TABLE data_recipient ALTER COLUMN total SET DEFAULT 0.0;
ALTER TABLE data_countryyear ALTER COLUMN total SET DEFAULT 0.0;
ALTER TABLE data_recipientyear ALTER COLUMN total SET DEFAULT 0.0;
ALTER TABLE data_scheme ALTER COLUMN total SET DEFAULT 0.0;
ALTER TABLE data_schemeyear ALTER COLUMN total SET DEFAULT 0.0;
ALTER TABLE data_recipientschemeyear ALTER COLUMN total SET DEFAULT 0.0;
ALTER TABLE data_totalyear ALTER COLUMN total SET DEFAULT 0.0;

It’s needed to make total columns default to 0.0.

2.2.2 Source Overview

Apps

Like all Django projects the Farmsubsidy website is organized in different Django apps. Here is a list of the existing
apps with a short description. Don’t take the Importance column too serious, it is just for rough orientation:

App Description URL paths Status Importance
api API for farmsubsidy /api/ inactive +
comments
countryinfo App for transparency index /transparency/ active ++
data Central app, data structure /, /ES/* active +++
features News and reports app /news/* active +
feeds
frontend Annotation management for users /myaccount/* active +
graphs Graph visualisation /graph/* inactive o
listmaker Experimental, recipient lists /lists/* inactive +
petition Special petition app, ignore /petition/* inactive o
search Haystack search /search/* active ++

Other folders:

Folder Description
locale Minimal french localization file, ignore
media CSS, images and Javascript
misc Small helper classes and functions
templates Folder for common templates

8 Chapter 2. User Manual

FarmSubsidy.org Documentation, Release DEV

2.2.3 Loading Data

Data model

You can find the main data structure in the models.py file of the data app.

The core models are:

Recipient

A recipient is a receiver of subsidy payments and is in most cases a company or governmental institution.

There are no unique recipient IDs provided by the EU, so the IDs are provided internally by the system. The central
identifying attribute for the recipient is the name attribute, though there will sometimes be double entries for the same
entities due to inconsistencies in the source data.

Most other information like adress data or geo information is not mandatory.

Scheme

A scheme is identifying a type of payment. Since the structure of the EU subsidy system has changed over the years
you can also find different type of schemes for the payments, examples are:

• Export subsidies

• Market regulations

• School Milk (yeah, healthy :-))

• ...

In the last years, the dominating schemes are:

• European Agricultural Fund for Rural Development (EAFRD)

• Direct payments under European Agricultural Guarantee Fund (EAGF direct)

• Other payments under European Agricultural Guarantee Fund (EAGF other)

See also the Background Information chapter for where to read about this.

Payment

A payment is a paid subsidy for a certain recipient connected with an existing scheme for a special year. There
can be several payments per year for different schemes for the same recipient.

Loading aggregated data (up to year 2012)

For Farmsubsidy there are aggregated data files up to the farm subsidy data for 2012.

Download the data

You can download the aggregated data files in CSV format under the following URL:

• http://data.farmsubsidy.org

2.2. Website 9

https://github.com/openspending/Farm-Subsidy/blob/master/web/data/models.py
http://data.farmsubsidy.org

FarmSubsidy.org Documentation, Release DEV

Data for a single country is provided in a packaged format, e.g.:

• http://data.farmsubsidy.org/AT.tar.bz2

Put the data in the data folder in the following format:

data/csv/<CountryCode>/payment.txt

You need the following files there:

• payment.txt

• recipient.txt

• scheme.txt

Import the data

Now you can import the data with custom Django management commands, e.g. for Austria:

python manage.py copier -c AT #takes some time...

Loading year-by-year data (year 2013 or newer)

Starting with the data for 2013 there are some changes in the data integration process going along with the introduction
of the new Farmsubsidy GitHub scraper repository.

Data is now scraped and stored on a year-by-year basis (see: Scraper Data Format) and has to be put in the data format
for import in the following form:

data/csv/<CountryCode>/payment_2013.txt

There is a new management command load_year_data in the data app of the Farmsubsidy sources which can be used
like this:

python manage.py load_year_data COUNTRY YEAR DELIMITER [--simulate] [--ignore-existing]

This management command loads data from the new simplified data format. It tries to match recipients by name
attribute and connects a payment either to a matched recipient or creates a new one if no match was found. You can
run the command with the --simulate option to get an impression of how many recipients would be matched.

The --ignore-existing option lets you ignore already existing entries for the given year and country in the DB,
otherwise there would be an error message.

Note: This management command is still in a BETA stadium. If you use it for integration of data in the production
deployment please check how the data is integrated, if everthing is at the right place and if format, attributes and
number of payments are correct. Have a look at the code on GitHub and correct if necessary!

Note that there is also a new ID format for new recipient and payment entries calles ZID. This is for easier
ordering and determining the latest IDs, since IDs are stored in text format (ahum :-)) at the moment, which leads to
ordering like this: “GB1, GB892, GB99”.

ZIDs are stored in a format like this: “[COUNTRY_CODE]Z[ID Number + 0s leading to 7 ciphers]”, leading to
orderings like: “GBZ0000001, GBZ0000099, GBZ0000892”.

Please be careful here. It is not yet fully determined, if the introduction of a new ID format has negative hidden side
effects on other places (if you know, drop a note). At the moment ZIDs are also quite (too) short due to a currently
existing limitation of max_length=10 for the ID fields.

10 Chapter 2. User Manual

http://data.farmsubsidy.org/AT.tar.bz2
https://github.com/openspending/farmsubsidy-scrapers
https://github.com/openspending/Farm-Subsidy/blob/master/web/data/management/commands/load_year_data.py

FarmSubsidy.org Documentation, Release DEV

Post-integration data processing

Data denormalization

At the moment there is some data denormalization going on reorganizing the data into different tables for performance
purposes:

python manage.py normalize -c AT #takes even longer...

Repeat that for every country or test with data for just one country.

Run a VACUUM VERBOSE ANALYZE on all database tables afterwards (make sure you are connected to the correct
database before, on psql: \c farm_geo).

Now you should be able to browse the imported data on the local website and see the list of recipients in the
Django admin area.

Update the search index

When all/some countries are imported, run search indexing:

python manage.py fs_update_index

#yes, you guessed it, don’t drink too much coffee :-)...
#For this step you can definitely go away and do something else.

Now you should be able to use the search box on the website and get some results.

Update total payments number

After this you can update the total payments number on the front page like this:

python manage.py payment_totals #This is quick. Whew. :-)

2.2.4 Testing

Test coverage is poor, but new tests are being written all the time, as my resolution is not to fix any bug without writing
a test for it first.

Some tests only test code, but mostly the tests are there for making sure the database is being processes correctly in
the (de)normalization process.

Because there is quite a large dataset (to make testing better) it’s highly recommended that a persistent test database is
set up and the persistent test runner from Django Test Utils is used.

The initial data for the recipient, payment and scheme model is found in ./web/data/fixtures/data.sql.
This should be loaded in to the test_[db_name] database before running the tests.

Below are the steps that should be taken, assuming the code is actually running:

1. Install django-test-utils and append test_utils to INSTALLED_APPS in settings.py (see
comment there)

2. Create the test database somehow. I find this is easiest done by running ./manage.py testserver as this
doesn’t destroy the database on exit. You could also prefix the database name in settings with test_, syncdb
and then change it back again.

2.2. Website 11

http://readthedocs.org/docs/django-test-utils/en/0.3/keep_database_runner.htm

FarmSubsidy.org Documentation, Release DEV

3. Load the data in ./web/data/fixtures/data.sql in to the new database. This isn’t added automati-
cally because of the time it takes to run tests without the persistent database.

4. run ./manage.py quicktest

2.2.5 Changelog (Website)

Changelog for the development of the website.

Current Changes (version not yet determined) (2014-03-15)

• Added new section in docs for Website development documentation (see: Website)

• Added detailed installation instructions for website/DB deployment (see: Installation)

• Integration fragmented doc files of GitHub repository in new Sphinx documentation

• Added source code description in docs with app overview (see: Source Overview)

• Added information about how to load data in the DB (see: Loading Data)

• Added new management command load_year_data in data app on GitHub for loading year specific
data in new data format starting with the 2013 data. Data loading can be simulated with --simulate, new
recipients are matched by name attribute against existing recipients. New ZID ID format for payments and
recipients. (see load_year_data.py file on GitHub)

• Added documentation about how to use management command load_year_data, additional infos about
current stadium and precautions when using (see: Loading year-by-year data (year 2013 or newer))

2.3 Scraper

This part of the documentation describes how to write scrapers for the Farmsubsidy project.

2.3.1 How to contribute

There is a separate GitHub repository collecting the different scrapers:

• https://github.com/openspending/farmsubsidy-scrapers

In the repository there is a separate folder for each scraper, named by the country code of the scraper, e.g. at for
Austria:

• https://github.com/openspending/farmsubsidy-scrapers/tree/master/at

There is also a very detailed Data Overview document on Google Docs. Public data urls are not up-to-date any more,
but make sure to notice the Data Documentation URLs at the end of the detail view sheet:

• Data Overview Document (Google Docs)

For each scraper there is a corresponding issue on GitHub. If you want to help out with a scraper have a look at the
open issues, see if there is already somebody responsible and drop a note to avoid that there are several people working
on the same scraper in parallel.

Note: Before you write your scraper:

• Check, if there is a download button on the data website (I actually didn’t when I wrote the example scraper!
:-))

12 Chapter 2. User Manual

https://github.com/openspending/Farm-Subsidy/blob/master/web/data/management/commands/load_year_data.py
https://github.com/openspending/farmsubsidy-scrapers
https://github.com/openspending/farmsubsidy-scrapers/tree/master/at
https://docs.google.com/spreadsheet/ccc?key=0Ajagl3TOC7X_dFlzQ0ljaUxUWVNmNE40TGdweWNlcEE&hl=en#gid=0
https://github.com/openspending/farmsubsidy-scrapers/issues?labels=memberstate&state=open

FarmSubsidy.org Documentation, Release DEV

• Do some creative googling if someone else already has written a scraper for the site! If so: try to get in contact
and ask if the scraper can be used under an open licence.

2.3.2 Data Sources

Data is provided on a country-by-country basis. Mostly you will find a web form where you can filter the data by
things like year, amount or the region and get back an HTML table with the single payments. Sometimes data is also
provided in a downloadable format.

Here are some examples:

• Belgium (just hit search button)

• UK (get data by searching for amount > 1.000.000)

• Germany (get data by searching for EGFL > 1.000.000)

• Slovenia (get data by selecting a sum and search)

You can find the relevant data source on the issue page of a country in the GitHub repo.

2.3.3 Format of the existing data files

To get an idea of how data is structured in the DB have a look at the Data model chapter in the Website documentation
section.

You can find the data scraped by the old proprietary scrapers in the following folder:

• http://data.farmsubsidy.org

Please download one of the compressed country data files and unpack it, e.g.:

http://data.farmsubsidy.org/AT.tar.bz2

A data package consists of the following files:

recipient.txt
scheme.txt
payment.txt

Due to its size you probably can’t open recipient.txt or payment.txt with a visual editor but need an editor
like vi and use it from the command line.

Each file contains the data for the corresponding data model in CSV format, here are some extracts.

Start of a recipient.txt file:

"recipientId";"recipientIdx";"globalRecipientId";"globalRecipientIdx";"name";"address1";"address2";"zipcode";"town";"countryRecipient";"countryPayment";"geo1";"geo2";"geo3";"geo4";"geo1NationalLanguage";"geo2NationalLanguage";"geo3NationalLanguage";"geo4NationalLanguage";"lat";"lng"
1;1;"AT1";"AT1";"Adrigan Barbara";;;;;"AT";"AT";"Burgenland";"Lutzmannsburg";;;;;;;;
2;2;"AT2";"AT2";"Aibler Maria";;;;;"AT";"AT";"Burgenland";"Zillingtal";;;;;;;;
3;3;"AT3";"AT3";"Allacher Ilse und Matthias";;;;;"AT";"AT";"Burgenland";"Gols";;;;;;;;

Complete scheme.txt file:

"GlobalSchemeId";"nameNationalLanguage";"nameEnglish";"budgetlines8Digit";"countryPayment"
"AT7";"Öffentliche Lagerhaltung (Intervention)";"Intervention";;"AT"
"AT2";"Indirect";"Indirect";;"AT"
"AT1";"Direct";"Direct payments under European Agricultural Guarantee Fund";;"AT"

Start of a payment.txt file:

2.3. Scraper 13

http://www.belpa.be/pub/EN/data.html
http://cap-payments.defra.gov.uk/
http://www.agrar-fischerei-zahlungen.de/Suche
http://www.arsktrp.gov.si/si/o_agenciji/informacije_javnega_znacaja/prejemniki_sredstev/prejemniki_sredstev/
http://data.farmsubsidy.org
http://data.farmsubsidy.org/AT.tar.bz2

FarmSubsidy.org Documentation, Release DEV

"paymentId";"globalPaymentId";"globalRecipientId";"globalRecipientIdx";"globalSchemeId";"amountEuro";"amountNationalCurrency";"year";"countryPayment"
1223535;"AT1223535";"AT317577";"AT317577";"AT5";11733.75;;"2008";"AT"
1223536;"AT1223536";"AT12327";"AT12327";"AT5";36445.65;;"2008";"AT"
1223537;"AT1223537";"AT44239";"AT44239";"AT5";82.10;;"2008";"AT"

2.3.4 Scraper Data Format

CSV Format

The new GitHub scrapers will be used to scrape farmsubsidy data for the year 2013 and newer and only have to output
a payment file with a reduced data format and no recipient and scheme files. Please write your scraper so that
it will take the year as an input parameter and writes files like this:

payment_YEAR.txt

The reduced data format looks like the following:

"rName";"rAddress1";"rAddress2";"rZipcode";"rTown";"globalSchemeId";"amountEuro";
"Nordmilch AG";;;;;"D1";15239.34;
"Emsland-Stärke GmbH";Am Bahnhof 4B;;15938;Golßen;"D2";32305.45;
...

The scraped data will be loaded into the database with a (yet to be written) Django management command. Recipient
names will be matched against existing recipient names.

The following table describe the single attribute formats.

Attribute Description Mandatory Data Type
rName Name of recipient YES String
rAdress1 Adress field 1 for recipient (Street) NO String
rAdress2 Adress field 2 for recipient (other) NO String
rZipcode Zipcode of recipient town NO String
rTown Town of recipient NO String
globalSchemeID Scheme ID from existing scheme.txt YES String
amountEuro Amount in Euro (1) YES(or 2) Float
amountNationalCurrency Amount in national currency (2) YES(or 1) Float

Note: Since the names you scrape will be later matched against the names already existing in the database please
make some searches on the Farmsubsidy website and see, how names are formatted there. Try to keep names written
as they are on the website so matching will be easier and double entries will be prevented.

Note: For the scheme ID please take an existing scheme ID from the scheme.txt file of the country (see Format
of the existing data files). If you can’t find a fitting scheme ID ask on the GitHub issue page and use a temporary
schemeID like AT-TMP1.

Note: Please provide either the amount in Euro or in the national currency (e.g. for UK). Don’t make any implicit
conversions, leave field not provided blank!

UTF-8 Encoding

Please make sure that you use UTF-8 as an encoding for your output file format and keep recipient data in the original
language and characters.

Here are some examples:

14 Chapter 2. User Manual

FarmSubsidy.org Documentation, Release DEV

• Bólyi Mezőgazdasági Termelő és Kereskedelmi Zrt. (Hungary)

• GREENGROW spółka z ograniczonš odpowiedzialnociš (Poland)

• Südzucker GmbH (Germany)

• Alcoholes Gcía de la Cruz Vega (Spain)

2.3.5 Technology

At the moment, the following technologies/programming languages for scrapers are supported:

Python/Scrapy

Introduction

Scrapy is a python scraping framework with a lot of built in scraping functionality, for introductory information see
the Scrapy website:

• Scrapy

Installation

For running a Scrapy spider, please install the Scrapy version from the requirements file:

• Requirements file: requirements_scrapy.txt

You can find a Scrapy project deployment in the GitHub repository in the scrapy_fs folder. In this deployment,
there is already the data structure defined in the items.py file.

Writing a spider

There is a reference implementation for a scrapy spider for the GB website. The spider can be found at (Link:

scrapy_fs/scrapy_fs/spiders/gb_spider.py

If you want to write a spider with Scrapy, please add/name your spider in an analog way and write a note in the root
gb (COUNTRY_CODE) directory that the spider is being realized with Scrapy.

A Scrapy spider can be executed like that from the scrapy_fs directory:

scrapy crawl GB -a year=YEAR

A CSV output can be generated like this:

scrapy crawl GB -a year=2012 -o payment_2012.txt -t csv

Note: Scrapy won’t maintain the order of the attributes of the csv file. That’s ok.

Python

If you have your own preferred way of writing scrapers with Python, you can do that as well. Then please write your
scraper in a form, that it can be executed from the command line. Add the requirements you need to the global python
requirements file:

2.3. Scraper 15

http://scrapy.org/
https://github.com/openspending/farmsubsidy-scrapers/blob/master/requirements_python.txt
https://github.com/openspending/farmsubsidy-scrapers/blob/master/scrapy_fs/scrapy_fs/spiders/gb_spider.py

FarmSubsidy.org Documentation, Release DEV

• Global requirements file: requirements_python.txt

Note: If you’ve written a Python scraper you think can serve as a good starting point for other scrapers and can be
entered here as a reference implementation, please drop a note!

Ruby

You can also write a Ruby scraper, please also create the scraper in a command line-executable form.

Add your requirements to the global Ruby Gemfile:

• Global Gemfile: Gemfile

Note: If you’ve written a Ruby scraper you think can serve as a good starting point for other scrapers and can be
entered here as a reference implementation, please drop a note!

Other

If you have another technology you want to use, please ask the person currently responsible for maintaining the
Scrapers (try on GitHub). The reason for limiting the technologies a bit is that all scrapers for the different countries
have to be maintained and an executable environment have to be kept up to be able to run the scraper from a central
location independently from the creators.

2.3.6 Changelog (Scraper)

This changelog deals mainly with the data format definition for the scrapers (see: Scraper Data Format)
and the technology supported in the scraper repository (see: Technology).

Changes in version DRAFT1 (2014-03-15)

• Added basic documentation for scraper repository (see: Scraper)

• Added documentation for existing data format (see: Format of the existing data files)

• Added DRAFT definition for a new simplified scraper data format (see: Scraper Data Format)

• Added section for supported technologies (see: Technology)

• Added scrapy_fs Scrapy project on GitHub for unified Scrapy scraper development, items.py file for data
format definition, pipelines.py file for basic data format validation (see: GitHub scrapy_fs directory)

• Added Scrapy reference scraper for GB (see gb_spider.py on GitHub)

• Documentation about how to execute Scrapy spiders (see: Python/Scrapy)

16 Chapter 2. User Manual

https://github.com/openspending/farmsubsidy-scrapers/blob/master/requirements_python.txt
https://github.com/openspending/farmsubsidy-scrapers/blob/master/requirements_python.txt
https://github.com/openspending/farmsubsidy-scrapers/tree/master/scrapy_fs
https://github.com/openspending/farmsubsidy-scrapers/blob/master/scrapy_fs/scrapy_fs/spiders/gb_spider.py

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17

	Overview
	User Manual
	Introduction
	Website
	Scraper

	Indices and tables

